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In a previous paper, we proposed assigning as the value of a physical quantity
in quantum theory a certain kind of set (a sieve) of quantities that are functions
of the given quantity. The motivation was in part physical Ð such a valuation
illuminates the Kochen ±Specker theorem Ð and in part mathematical Ð the
valuation arises naturally in the topos theory of presheaves. This paper discusses
the conceptual aspects of this proposal. We also undertake two other tasks. First,
we explain how the proposed valuations could arise much more generally than
just in quantum physics; in particular, they arise as naturally in classical physics.
Second, we give another motivation for such valuations (that applies equally to
classical and quantum physics). This arises from applying to propositions about
the values of physical quantities some general axioms governing partial truth for
any kind of proposition.

1. INTRODUCTION

In a previous paper [1]Ð referred to hereafter as (I)Ð we proposed

assigning as the value of a physical quantity in quantum theory a certain

kind of set (a sieve) of quantities that are functions of the given quantity.
Our motivation was in part physicalÐ such a valuation illuminates the

Kochen±Specker theoremÐ and in part mathematicalÐ the valuation arises

naturally in the topos theory of presheaves. These aspects were closely linked.

We interpreted a valuation as assigning truth values to propositions `A P D ’

asserting that the value of the quantity A lies in the Borel subset D of the

spectrum of the operator AÃthat represents A. The fact that one quantity can
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be a function, or coarse-graining, of another implies that there is a natural

presheaf associated with these propositions. And the theory of presheaves

gives a natural generalization of the FUNC property (viz., that the value of

a function of a given quantity is the function of the value of the quantity),

which plays a central role in the Kochen±Specker theorem.

In this paper, we first show how sieve-valued valuations obeying our

generalization of FUNC arise much more generally than just as the values

of quantities in quantum physics, and, accordingly, how the principal results

of (I) can be generalized. In fact, we claim that they are one of the most

natural notions of valuation for any presheaf of propositions, no matter what

their topic. From a physical perspective, a mathematical structure of this type

is indicated whenever the idea of `contextual’ statements about the system

(i) is physically appropriate and (ii) is so in such a way that the set of all

possible such contexts can be regarded as the objects in a category, which

then forms the base category over which the presheaves are defined. As we

shall see, in making this claim we assume about valuations on propositions

only the basic idea that they must be some sort of structure-preserving function

from the set of propositions (with operations such as negation, conjunction,

etc., defined on it) to the set of truth values, which is to be some sort of

logical algebra.

That is the task of Section 3, where we show that sieve-valued valuations

arise naturally in classical physics, and Section 4, where we show how such

valuations can arise in even more general contexts. But first, to facilitate

reading the paper, there is a short review of the elements of the theory of

presheaves [more concise than in (I), but with some extra heuristic material],

and of how these ideas were applied in (I) to quantum physics.

The paper ends with a presentation of another motivation for such

valuations (Section 5). We will argue that intuitive ideas about what might

be meant by the notion of `partial truth’ (applying to any type of proposition)

make sieve-valued valuations very natural. Among these principles, the main

one will be that a proposition is nearer to `total truth,’ the larger the subset

of its consequences that are themselves totally true. This argument, and the

principles it refers to, is conceptual, not mathematical: indeed, it will not need

the mathematical notions of Section 2, except the idea of a categoryÐ that is

compulsory, in order to make sense of the notion of a sieve. But the argument

and its principles can be made precise most naturally by using the ideas of

presheaf theory; in particular, the idea of `consequence’ (entailment) can be

made precise in terms of the generalized notion of coarse-graining introduced

in Section 4. Again, we shall see that the proposals of (I) arise from applying

these general ideas to propositions about the values of quantum physical

quantities.
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We remark incidentally that there are still other motivations for sieve-

valued valuations obeying a generalized FUNC. We discuss philosophical

ones in ref. 2 and physical ones in ref. 3, in each case adding further material.
For example, semantics for intuitionistic logic of the Kripke±Beth type assigns

to each formula as its interpretation a sieve on a poset, points of which are,

intuitively, possible states of knowledge, so that paths represent possible

courses of enquiry. In ref. 2 we describe how this kind of construction

suggests, as an analogy, our own valuations. In ref. 3 the motivation concerns

assigning to a quantity a Borel subset (rather than an element) of its spectrum;
it also is foreshadowed in (I).

2. REVIEW OF PART I

In the first two subsections, we review elements of the theory of pre-

sheaves. In the third, we summarize how this theory was applied in (I) to
the Kochen±Specker theorem, and to the idea of generalized valuations on

the physical quantities in a quantum theory.

2.1. Categories, Presheaves, and Subobjects

A presheaf X on a small3 category # is a function that:

1. Assigns to each #-object A a set X(A).

2. Assigns to each #-morphism f : B ® A a set function, X( f ):

X(A) ® X(B).

3. Makes these assignments in a `meshing’ way, i.e., X(idA) 5 idX(A);

and, if g: C ® B and f : B ® A, then

X( f + g) 5 X(g) + X( f ) (2.1)

where f + g: C ® A denotes the composition of f and g.

So, intuitively, a presheaf is a collections of sets that vary in a meshing way

between `stages’ or `contexts’ A, B, . . . that are objects in the category #.
In terms of contravariant and covariant functors, a presheaf on # is a contra-

variant functor from # to the category Set of normal sets. Equivalently, it is

a covariant functor from the `opposite’ category4 #op to Set.

To make the collection of presheaves on # into the objects of a category,

we recall that a morphism between two presheaves X and Y is defined to

3 A category is said to be small if the collection of objects, and the collection of all morphisms
between a pair of objects, is a set.

4 The `opposite’ of a category # is a category, denoted #op, whose objects are the same as
those of #, and whose morphisms are defined to be the same as those of #, but with each
arrow reversed in direction.
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be a natural transformation N: X ® Y, by which is meant a family of maps

(called the components of N ) NA: X(A) ® Y(A), A an object in #, such that

if f : B ® A is a morphism in #, then the composite map

X(A) ®
NA

Y(A) ®
Y( f )

Y(B) is equal to X(A) ®
X( f )

X(B) ®
NB

Y(B). In other words,

we have the commutative diagram

X( f )
X(A) Ð Ð ® X(B)

(2.2)½
½
¯

½
½
¯

NA NB

Y( f )
Y(A) Ð Ð ® Y(B)

The category of presheaves on # equipped with these morphisms is denoted

Set#
op

.

Since # is small, it follows that Set#
op

is a topos. But we will not need
the full definition of a topos here [4, 5]: it suffices that it is a category that

behaves much like the category Set, in particular as regards `subobjects’ Ð the

analogue of subsets. To this we now turn.

2.2. Subobjects, Sieves, and Sections

2.2.1. Subobjects

The key idea about subobjects in a topos, which will be used throughout
this paper, is this. Just as an object in Set, i.e., a set X, has subsets K # X
that are in one-to-one correspondence with set functions x K: X ® {0, 1}

from X to the special set {0, 1}, where x K(x) 5 1 if x P K and x K(x) 5 0

otherwise, so in a topos the subobjects K of an object X are in one-to-one

correspondence with morphisms x K: X ® V , where the special object V in
the toposÐ called the `subobject classifier’ Ð forms an object of possible

truth values, just as {0, 1} does in the category of sets.

We turn to the exact definitions. An object K is said to be a subobject
of X in the category of presheaves if there is a morphism in the category

(i.e., a natural transformation) i: K ® X with the property that, for each

stage A, the component map iA: K(A) ® X(A) is a subset embedding, i.e.,
K(A) # X(A). Thus, if f : B ® A is any morphism in #, we get

K( f )
K(A) Ð Ð ® K(B)

(2.3)

½
½
¯

½
½
¯

X( f )
X(A) Ð Ð ® X(B)
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where the vertical arrows are subset inclusions. In particular, it follows that

K( f ) is the restriction of X( f ) to K(A).

It is clear in what way the definitions above generalize the ideas of set
and subset. Namely, a presheaf over the category # consisting of a single
object O corresponds to a set X: 5 X(O), and a subobject of this presheaf

corresponds to a subset of X.

2.2.2. Sieves and the Subobject Classifier V

To give the generalization for presheaves of an ordinary subsets’ charac-

teristic function x K: X ® {0, 1}, we first need the idea of a sieve. A sieve
on an object A in # is defined to be a collection S of morphisms in # with
codomain A, and with the property that if f : B ® A belongs to S and if g:

C ® B is any morphism, then f + g: C ® A also belongs to S.

With the idea of a sieve, one can immediately define the subobject
classifier. It is the presheaf V : # ® Set defined by the following.

1. If A is an object in #, then V (A) is the set of all sieves on A.

2. If f : B ® A, then V ( f ): V (A) ® V (B) is defined as

V ( f )(S) : 5 {h: C ® B | f + h P S} (2.4)

for all S P V (A); the sieve V ( f )(S) is often written as f *(S), and
is known as the pullback to B of the sieve S on A by the morphism

f : B ® A.

There are two main aspects to the idea that V supplies an object of

generalized truth values. Both arise from the basic idea mentioned in Section

1: that a valuation on propositions (of any sort, not necessarily about the

values of physical quantities) must be some sort of structure-preserving

function from the set of propositions (with some such operations as negation,

conjunctions, etc., defined on it) to the set of truth values, which is to be
some sort of logical algebra.

The first aspect is the fact that for any A in #, the set V (A) of sieves

on A is a Heyting algebra. This is a logical algebra that is distributive, but

more general than a Boolean algebra, the main difference being in the behavior

of negation. In this paper, we shall not need the exact definition: we need

only to remark that the Heyting algebra structure of V (A) is very natural,
and then to make an ensuing conceptual point.

Specifically, V (A) is a Heyting algebra where the partial ordering is

defined on S1, S2 in V (A) by S1 # S2 if S1 # S2; so that the unit element

1 V (A) in V (A) is the principal sieve ¯ A : 5 { f: B ® A} of all arrows whose
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codomain is A, and the null element 0 V (A) is the empty sieve 0¤. The connectives

for conjunction and disjunction are defined as5

S1 Ù S2 : 5 S1 ù S2 (2.5)

S1 Ú S2 : 5 S1 ø S2 (2.6)

The conceptual point is significant. It is that if for some reason a set of
propositions is associated with each A in a category # (perhaps, but not

necessarily, as a presheaf), so that one is concerned to define contextual
valuations, i.e., valuations associated with each `context’ or `stage of truth’

A, then the set V (A), being a Heyting algebra, forms an `algebraically well-

behaved’ target space for such a valuation associated with A.

The second aspect will be prominent in this section and beyond. It is
the idea of generalizing to presheaves the way that the subsets K of an

ordinary set X are in one-to-one correspondence with characteristic functions

x K: X ® {0, 1}, from X to the two classical truth values {0, 1}. More

precisely: The presheaf V plays a role for the topos Set#
op

analogous to the

set {0, 1}. That is to say, subobjects of any object X in this topos (i.e.,
subobjects of any presheaf on #) are in one-to-one correspondence with
morphisms x : X ® V .

First, let K be a subobject of X. Then there is an associated characteristic
morphism x K: X ® V , whose component x K

A : X(A) ® V (A) at each A in #
is defined as

x K
A (x) : 5 { f: B ® A | X( f )(x) P K(B)} (2.7)

for all x P X(A).

That the right-hand side of Eq. (2.7) actually is a sieve on A follows

from the defining properties of a subobject. Thus, in each `branch’ of the

category # going `down’ from the stage A, x K
A (x) picks out the first member

B in that branch for which X( f )(x) lies in the subset K(B), and the commuta-

tive diagram (2.3) then guarantees that X( f + h)(x) will lie in K(C ) for all

h: C ® B. Hence each A in # serves as a possible `context’ or `stage of

truth’ for an assignment to each x P X(A) of a generalized truth value which

is a sieve belonging to the Heyting algebra V (A), rather than an element of
the Boolean algebra {0, 1} of normal set theory.

Conversely, each morphism x : X ® V (i.e., each natural transformation

between the presheaves X and V ) defines a subobject K x of X by defining,

for each stage of truth A,

5 The other key connective is the pseudo-compleme nt of S1 relative to S2. This is defined as
S1 Þ S2 : 5 { f: B ® A | for all g: C ® B if f + g P S1 then f + g P S2}. The negation of an
element S is defined as Ø S : 5 S Þ 0, so that Ø S : 5 { f: B ® A | for all g : C ® B, f + g ¸ S}.
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K x (A) : 5 x 2 1
A {1 V (A)} 5 {x P X(A) | x A(x) 5 ¯ A} (2.8)

and by defining for each f : B ® A the map K x ( f ): K x (A) ® K x (B) to be

the restriction of X( f ) to K x (A):

K x ( f ) : 5 X( f ) | K x (A) (2.9)

Note that the fact that principal sieves pull back to principal sieves ensures

that Eq. (2.9) implies that, for any x P K x (A)

x B(X( f )(x)) 5 V ( f )( x A(x)) 5 V ( f )( ¯ A) 5 ¯ B (2.10)

so that X( f )(x) P K x (B), i.e., K x is indeed a subobject of X.

Note how this correspondence between subobjects and characteristic

morphisms simplifies in the special case mentioned above (Section 2.2.1) of

presheaves on the category with a single object. In effect, one gets just two

truth valuesÐ the unit element 1 V (O) and the null element 0 V (O), at the single

stage of truth O; and the component of the characteristic morphism at this
single stage is just the characteristic function of a subset of X : 5 X(O).

2.2.3. Sections of a Presheaf

In any category, a terminal object is defined to be an object 1 such that,

for any object X in the category, there is a unique morphism X ® 1. A global
element of an object X is defined to be any morphism 1 ® X. The motivation

for this definition is that, in the case of the category of sets, a terminal object
is any singleton set { * }, and then there is a one-to-one correspondence

between the elements of a set X and functions from { * } to X.

For the category of presheaves on #, a terminal object 1: # ® Set can

be defined by 1(A) : 5 { * } at all stages A in #; if f : B ® A is a morphism

in #, then 1( f ): { * } ® { * } is defined to be the map * j * . A global element

of a presheaf X is also called a global section. As a morphism g : 1 ® X in
the topos Set#

op
, a global section corresponds to a choice of an element g A P

X(A) for each stage A in # such that, if f : B ® A, the `matching condition’

X( f )( g A) 5 g B (2.11)

is satisfied.

As discussed in the next subsection, the Kochen±Specker theorem is

equivalent to the statement that certain presheaves that arise naturally in

quantum theory have no global sections. But on the other hand, a presheaf
may have `partial’ or `local’ elements even if there are no global ones. In

general, a partial element of an object X in a category with a terminal object

is defined to be a morphism U ® X, where U is a subobject of the terminal

object 1. In the category of sets, there are no nontrivial subobjects of 1 : 5
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{ * }, but this is not the case in a general topos. In particular, in the case of

presheaves on #, a partial element of a presheaf X is an assignment g of an

element g A to a certain subset of objects A in #Ð what we shall call the domain
dom g of g Ð with the properties that (i) the domain is closed downward in

the sense that if A P dom g and f : B ® A, then B P dom g , and (ii) for

objects in this domain, the matching condition (2.11) is satisfied.

2.3. Some Applications to Quantum Physics

In this final subsection, we will illustrate how the notions reviewed in

this Section can be applied to the topic of valuations in quantum theory.

Again, we will be concise and pick out just some of the main ideas of (I),

leaving some to be generalized in later Sections, and some wholly

unmentioned.

2.3.1. Categories of Quantities and the Kochen ± Specker Theorem

We first introduce the set 2d of all bounded self-adjoint operators with

purely discrete spectra, AÃ, BÃ, . . . , on the Hilbert space * of a quantum

system. We turn 2d into a category by defining the objects to be the elements
of 2d and saying that there is a morphism from BÃto AÃif there exists a real-

valued function f on s (AÃ) , R , the spectrum of AÃ, such that BÃ5 f(AÃ) (with

the usual definition of a function of a self-adjoint operator, using the spectral

representation). If BÃ5 f(AÃ), for some f : s (AÃ) ® R , then the corresponding

morphism in the category 2d will be denoted f2d: BÃ® AÃ.
We next form a presheaf on the category 2d from the spectra of its

objects. The spectral presheaf on 2d is the covariant functor S : 2op
d ® Set

defined as follows:

1. On objects: S (AÃ) : 5 s (AÃ)Ð the spectrum of AÃ.
2. On morphisms: If f2d: BÃ® AÃ, so that BÃ 5 f(AÃ), then

S ( f2d): s (AÃ) ® s (BÃ) is defined by S ( f2d)( l ) : 5 f ( l ) for all l P
s (AÃ).

With these definitions, we can state one version of the Kochen±Specker

theorem in terms of presheaves. Recall that one form of the theorem asserts
that if dim * . 2, there does not exist an assignment V to each object of

2d (i.e., each bounded self-adjoint operator on * with a discrete spectrum)

of a member of its spectrum, such that the so-called `functional composition

principle’ (for short FUNC ) holds, viz., that for any pair AÃ, BÃsuch that

BÃ5 f (AÃ),

V(BÃ) 5 f (V(AÃ)) (2.12)
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But this is precisely the `matching condition,’ Eq. (2.11), in the definition

of a global element, as applied to the spectral presheaf. Thus, in this form,

the Kochen±Specker theorem is equivalent to the statement that, if dim * .
2, there are no global elements of the spectral presheaf S : 2op

d ® Set. Note

that we have restricted attention to operators whose spectra are purely discrete

on the grounds that it is not physically meaningful to assign an exact value

to a quantity that lies in the continuous part of the spectrum of the associ-

ated operator.

2.3.2. From Partial Valuations to Generalized Valuations

Our next observation is that the Kochen±Specker theorem permits the

spectral presheaf to have partial elements, as defined in Section 2.2.3. In

more usual, physical language: it permits partial valuations, i.e., an assignment

to each element AÃin some subset, dom V, of 2d , of a member V(AÃ) of s (AÃ),
such that: (i) dom V is closed under taking functions of its members (`closed

under coarse-graining’ ), and (ii) for all AÃ, BÃP dom V, with BÃ5 f(AÃ), FUNC,

Eq. (2.12), holds. And there are many such partial valuations (whatever dim

*). For example, each choice of (i) an operator MÃ with a purely discrete

spectrum, and (ii) one of its eigenvalues m P s (MÃ) defines a partial valuation:

one just takes dom V to be the set of operators AÃthat are functions of MÃ,
AÃ5 f (MÃ), and one defines V(MÃ) : 5 m and V(AÃ) : 5 f (V(MÃ)) 5 f (m).

The idea of a partial valuation brings us to our main claims from (I)

(which remain central in this paper). There are in effect three, which we will

state briefly here, but explain in order in this and the next two subsections.

1. Given such a partial valuation, there is a natural associated valuation
that: (a) is defined on all propositions `A P D ’ , stating that the

value of the quantity A (represented by the operator AÃ) lies in D ,

a Borel subset of s (AÃ); and (b) assigns to such a proposition as its

value a sieve on AÃin the category 2d. These valuations have various

properties, in particular an analogue for sieves of the property FUNC,

an analogue that involves the idea of a pullback.
2. We then use these properties to generalize the notion of a valuation.

That is, we define a generalized valuation as a map that (i) assigns

a sieve on AÃto each proposition `A P D ,’ D # s (AÃ), and (ii) has

these properties. This definition has the desirable property that it

can readily be extended to the category 2 of all bounded self-adjoint

operators on the Hilbert space: specifically, a proposition of the
type `A P D ’ is physically (and mathematically) meaningful irre-

spective of whether or not the spectrum of AÃis purely discrete.

3. We show that a quantum state (a pure state or a mixture) defines

such a generalized valuation in a natural way.
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As to (1), the main idea is thatÐ in the discrete caseÐ even if AÃis not

in the domain, dom V, of a partial valuation V, for given D there might be

one or more functions f such that (i) f (AÃ) does lie in dom V, and (ii) V( f (AÃ)) P
f ( D ). This situation prompts three observations.

x First: If a function f satisfies conditions (i) and (ii), then so does g +
f for any g; so the set of morphisms in 2d associated with such

functions determines a sieve on AÃin 2d.

x Second: Condition (ii) means that V in effect assigns true (in the
usual classical sense!) to the proposition `f(A) P f( D ).’

x Third: The proposition `f(A) P f( D )’ is weaker than the original

proposition `A P D ,’ both intuitively (since functions are generally

not injective) and mathematically, in the sense that its representing

projector is larger in the lattice of projectors on *: EÃ[A P D ] #
EÃ[ f(A) P f( D )].

Putting these observations together, we propose to assign to `A P D ’

as a contextual, partial truth value at the stage AÃ, the sieve on AÃdetermined

by the functions obeying (i) and (ii). Formally, we define a generalized
valuation associated with a partial valuation V by

n V(A P D ) : 5 { f2d: BÃ® AÃ| BÃP dom V, V(BÃ) P f( D )} (2.13)

This generalizes the values assigned by V itself, in that V’ s assignments

correspond to those propositions `A P D ’ to which n V assigns the principal

sieve, ¯ AÃ: 5 { f2d: BÃ® AÃ}, i.e., the unit 1 V (AÃ) of the Heyting algebra V (AÃ).

We call this the totally true truth value, trueA. Thus n V (A P D ) 5 trueA if

(i) AÃlies in the domain of V and (ii) the value of AÃassigned by V lies in

the subset D # s (AÃ).
These definitions imply that the partial truth-value of `A P D ’ at stage

AÃis determined by those weaker propositions `f(A) P f( D )’ that are each

totally true at their stage f(AÃ). For this partial truth value just is the sieve

on AÃof coarse-grainings f(AÃ) of AÃat which `f(A) P f( D )’ is totally true. (We

shall return to this idea in Section 5.)
Generalized valuations associated with partial valuations have various

properties, of which we here mention just one, since it will be significant in

all later sections (other properties are listed in the next subsection). This

property is the analogue for sieves of the property FUNC. Roughly speaking,

it is that the value of a function of a quantity is the pullback of the quantity’ s

value. To be precise: If f2d: BÃ® AÃ, so that BÃ5 f(AÃ), then

n V(B P f( D )) 5 f*2d( n
V(A P D )) (2.14)
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This property has two welcome consequences. First, we can express the

point of the previous subsection in terms of pullbacks. For, note that for any

category #, with objects A, B, . . . , if S is a sieve on A, and if f : B ® A
belongs to S, then

f *(S) : 5 {h: C ® B | f + h P S} 5 {h: C ® B} 5 ¯ B (2.15)

Thus, for any category, the pullback of a sieve on A by any morphism from

B to A that belongs to the sieve is the principal sieve on B. Hence the pullback

of the truth value of `A P D ’ by a morphism within it is total truth at the

context (stage of truth) that is the morphism’ s domain. Second, there is a
special, and especially intuitive, case of the first point. Since for any category

the pullback of any principal sieve by any morphism is the principal sieve,

we can say: if `A P D ’ is totally true (at stage AÃ), then every weaker

proposition `f (A) P f ( D )’ is totally true [at its stage f (AÃ)].

2.3.3. Generalized Valuations and the Coarse-Graining Presheaf

We turn now to claim 2, and use the various properties possessed by

generalized valuations associated with partial valuations to define a wider
notion of a generalized valuation that is applicable to the category 2 of all

bounded, self-adjoint operators. Thus a generalized valuation is defined to

be any map that (i) assigns a sieve on AÃto each proposition `A P D ’ and

(ii) has these properties. For the sake of completeness, we state these properties

here, though in the rest of this paper we shall only make substantial use of

the firstÐ which is the sieve-analogue of FUNC [see (I) for the motivation
for the other three]:

(i) Functional composition: For any Borel function f : s (AÃ) ® R we have

n ( f (A) P f ( D )) 5 f *2 ( n (A P D )) (2.16)

(ii) Null proposition condition:

n (A P 0¤) 5 0¤ 5 0 V (A) (2.17)

(iii) Monotonicity:

If D 1 # D 2 then n (A P D 1) # n (A P D 2), (2.18)

i.e., n (A P D 1) # n (A P D 2)

(iv) Exclusivity:

If D 1 ù D 2 5 0¤ and n (A P D 1) 5 trueA , then n (A P D 2) , trueA

(2.19)
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For later use in this paper, we also note that our collection of sets of

propositions `A P D ’ at each stage AÃcan be made more precise; indeed, it

can be regarded as a presheaf, which we call the coarse-graining presheaf
G on 2. It is defined as follows:

(i) For each AÃin 2, the set G(AÃ) is defined to be the spectral algebra

of AÃ, i.e., the algebra of spectral projectors EÃ[A P D ] for the

various Borel sets D # s (AÃ); thus, G(AÃ) can be viewed as the
Boolean algebra of all propositions of the form `A P D .’

(ii) For each morphism f2: BÃ® AÃ, the map G( f2): G(AÃ) ® G(BÃ) is

defined by

G( f2)(EÃ[A P D ]): 5 EÃ[ f(A) P f( D )] (2.20)

or, equivalently, on propositions

G( f2)(`A P D ’ ): 5 `f(A) P f( D )’ (2.21)

Note that the proposition `f(A) P f( D )’ is equivalent to the proposi-

tion `A P f 2 1 ( f( D )),’ so the action of G( f2) can also be viewed

as the explicit coarse-graining operation

G( f2)(`A P D ’ ) : 5 `A P f 2 1( f( D ))’ (2.22)

in which G(BÃ) is identified as the appropriate subset of G(AÃ).

In (I) we remarked on the fact that, as it stands, the right-hand side of

Eq. (2.20) is not well defined if the function f and the Borel subset D #
s (AÃ) are such that f( D ) is not a Borel subset of R . The way around this is

to note that if f( D ) is a Borel subset, then we have

EÃ[ f (A) P f ( D )] 5 inf
K # s ( f (AÃ))

{EÃ[ f (A) P K ] | EÃ[A P D ] # EÃ[ f (A) P K ]} (2.23)

5 inf
K # s ( f (AÃ))

{EÃ[ f (A) P K ] | EÃ[A P D ] # EÃ[A P f 2 1(K )]} (2.24)

5 inf
K # s ( f (AÃ))

{EÃ[ f (A) P K ] | D # f 2 1(K )} (2.25)

where the infimum is taken over all Borel subsets K of s ( f (AÃ)). If f ( D ) is

not a Borel subset of R , then we use Eq. (2.23) as the definition of EÃ[ f(AÃ)

P f( D )] for the category of operators 2.
As we shall see in Section 4 and its sequel, the presheaf of propositions

discussed above and its generalizations play a central role in the motivations

for and properties of sieve-valued valuations such as the generalized valua-

tions just defined.
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2.3.4. Generalized Valuations from Quantum States

We turn to claim 3 above: that quantum states naturally define generalized

valuations in the above sense. This proceeds as follows.
The standard minimal interpretation of quantum theory holds that a

quantity A possesses a value a if and only if the state c is an eigenvector of

AÃwith eigenvalue a; i.e., AÃc 5 a c : or, more generally, that `A P D ’ is true

if and only if EÃ[A P D ] c 5 c . In terms of probability, it holds that `A P
D ’ is true if and only if Prob(A P D ; c ) 5 1, where Prob(A P D ; c ) denotes
the usual quantum mechanical (Born-rule) probability that the result of a

measurement of A will lie in D # s (AÃ) , R , given that the quantum state

is c .

But in view of the discussion above, it is natural to reflect that even if

c is not an eigenvector of AÃ, it is an eigenvector of coarse-grainings f(AÃ) of

AÃ(for example, the unit operator 1Ãis always such a function6); and hence
we are led to propose that we should assign to the proposition `A P D ’ the

sieve of such coarse-grainings for which c is in the range of the corresponding

spectral projector EÃ[ f(A) P f( D )]. Thus we define the generalized valuation

n c associated with a vector c P * as

n c (A P D ) : 5 { f2: BÃ® AÃ| EÃ[B P f( D )] c 5 c }

5 { f2:BÃ® AÃ| Prob(B P f( D ); c ) 5 1} (2.26)

where D is a Borel subset of the spectrum s (AÃ) of AÃ. One can check that

n c has all the properties (2.16) ±(2.19) required in the definition of a general-

ized valuation.

Furthermore, one can give an exactly analogous definition of the general-
ized valuation n r associated with a density matrix r . One defines

n r (A P D ) : 5 { f2:BÃ® AÃ| Prob(B P f( D ); r ) 5 1}

5 { f2:BÃ® AÃ| tr( r EÃ[B P f( D )]) 5 1} (2.27)

Again, all the properties required of a generalized valuation are satisfied.

3. SIEVE-VALUED VALUATIONS IN CLASSICAL PHYSICS

Before developing the conceptual aspects of the ideas of Section 2 in

a very general setting (in the next section), it is worth seeing how they apply

to classical physics. In the first subsection we give a presheaf perspective
on ordinary classical valuations. We first make a category out of the real-

valued functions on phase space that represent classical physical quantities;

6 If desired, and as explained in (I), such `trivial’ functions can be removed by replacing 2
with the category 2* defined to be 2 minus all real multiples of the unit operator.



840 Butterfield and Isham

we then introduce the analogue of the spectral presheaf, and contrast the

classical existence of global sections with the Kochen±Specker theorem; and

we remark that quantization can be represented as a functor. In the second
subsection, we motivate sieve valuations in terms of classical macrostates.

In the third, we generalize this motivation, and present the classical analogue

of generalized valuations associated with a partial valuation.

3.1. A Presheaf Perspective on Orthodox Classical Valuations

One usually thinks of quantities and their values in classical physics as
follows. If 6 is the state space of some classical system, a physical quantity

A is represented by a measurable real-valued function AÅ : 6 ® R , then the

value Vs(A) of A in any state s P 6 is simply

Vs(A) 5 AÅ (s) (3.1)

Thus all physical quantities possess a value in any state. Furthermore, if f :

R ® R is a measurable function, a new physical quantity f(A) can be defined
by requiring the associated function f(A) to be

f(A)(s) : 5 f(A(s)) (3.2)

for all s P 6; i.e., f(A) : 5 f + A: 6 ® R . Thus, by definition, the values of

the quantities f(A) and A satisfy a classical version of FUNC:

Vs( f(A)) 5 f(Vs(A)) (3.3)

for all states s P 6.

In terms of propositions of the form `A P D ,’ where D is a Borel subset

of R : to each microstate s P 6 there corresponds a valuation defined by

Vs (A P D ) 5 H 1 if s P AÅ 2 1[ D ]

0 otherwise
(3.4)

Thus the proposition `A P D ’ is assigned the value `true’ (1) by Vs if and

only if AÅ (s) P D .
We turn now to rendering these ideas in terms of presheaves. The notions

introduced in the next two subsections will also be used in later subsections

where we discuss sieve-valued valuations for classical physics.

3.1.1. The Category of Measurable Functions on 6

Let 6 be a classical state space, and let } denote the set of all real-
valued measurable functions on 6; thus each quantity A is represented by

one7 such function AÅ : 6 ® R . We now regard } as a category where (i)

7 Strictly speaking, functions that differ only on a set of Lebesgue measure zero should be
identified, but we shall ignore this subtlety here.
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the objects are the real-valued measurable functions on 6, and (ii) we say

there is a morphism from BÅ to AÅ if there exists a measurable function f :

6(AÅ ) ® R such that BÅ 5 f + AÅ [i.e., BÅ (s) 5 f(AÅ (s)) for all s P 6], where

6(AÅ ) 5 AÅ (6) 5 {r P R | $ s P 6, r 5 AÅ (s)} (3.5)

is the set of all possible values that the physical quantity A could take; it is
the classical analogue of the spectrum s (AÃ) of a self-adjoint operator AÃin

the quantum theory. The morphism in } corresponding to f :6(AÅ ) ® R will

be denoted f}: BÅ ® AÅ .

3.1.2. The Value Presheaf

The analogue of the spectral presheaf in quantum theory is now the
following. We define the value presheaf on } to be the covariant functor Y :

}op ® Set such that:

1. On objects: Y (AÅ ) : 5 6(AÅ )Ð the set of all possible values of the

quantity A.

2. On morphisms: If f}: BÅ ® AÅ , so that BÅ 5 f + AÅ , then Y ( f} ): 6(AÅ ) ®
6(BÅ ) is defined by Y ( f} )( l ) : 5 f( l ) for all l P 6(AÅ ).

We now observe that a global section of the value presheaf Y is a

function g that assigns to each object AÅ in the category } an element g AÅ P
6(AÅ ) in such a way that if f}: BÅ ® AÅ (so that BÅ 5 f + AÅ ), then Y ( f} )( g AÅ ) 5
g BÅ ; in other words,

g BÅ 5 f( g AÅ ) (3.6)

Thus each global section corresponds to a classical valuation that satisfies

classical FUNC, as in Eq. (3.3). Conversely, each such valuation determines
a global section of the value presheaf. Clearly, the key difference from the

situation in quantum theory (the Kochen±Specker theorem) is that the classi-

cal presheaf does have global sections: namely, each microstate s P 6
determines a global section g s defined by

g s
AÅ : 5 AÅ (s) (3.7)

for all stages of truth AÅ .

3.1.3. Quantization as a Functor from } to 2

We remark incidentally that we can represent in terms of } one of the
main practical problems in quantum physics, viz. knowing how to `quantize’

a given classical system. More precisely, one wants to associate to each

measurable function AÅ : 6 ® R a self-adjoint operator AÃ; or, perhaps, one

seeks to do this for some special subset of classical variables. There is no
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universal way of performing such a quantization, but it is generally agreed

that if a physical quantity represented by AÅ is associated in some way with

a particular operator AÃ, then, for any measurable function f : R ® R , the
function f(AÅ ) should be associated with the operator f(AÃ).

This preservation of functional relations can be represented neatly in

the language of category theory by saying that a quantization of the set of

all classical quantities corresponds to a covariant functor Q: } ® 2 that is

defined (i) on an object AÅ in } as Q(AÅ ) : 5 AÃand (ii) on a morphism f}:

BÅ ® AÅ , by

Q( f}) : 5 f2 (3.8)

This is because f}: BÅ ® AÅ means that BÅ 5 f + AÅ , and f2: BÃ® AÃmeans that
BÃ5 f(AÃ).

3.2. Motivating Sieve-Valued Valuations for Classical Physics

Since classical physics suffers no `Kochen±Specker prohibitions’ on

global valuations of the orthodox kind, the motivation in Section 2.3.2 for

sieve-valued valuationsÐ as being naturally associated with partial valua-

tionsÐ seems not to apply to classical physics. But, in fact, the notion of a
classical macrostate motivates the classical analogue of a partial valuation,

and thereby leads to the associated sieve-valued valuations. This subsection

describes the role of the notion of a macrostate; and the next subsection

develops the idea so as to give the exact classical analogue of the partial

valuations discussed in Section 2.3.2 and of the associated generalized

valuations.
So suppose we are given, not a microstate s P 6, but only a macrostate,

represented by some Borel subset R # 6: what then can be said about the

`value’ of a quantity A, or the truth value of a proposition `A P D ’ ? Various

responses are possible8: for example, the obvious choice is simply to say

that the proposition `A P D ’ is true in the macrostate R if AÅ (R) # D , and

false otherwise. Thus `A P D ’ is defined to be true if, for all microstates s
in R, the value AÅ (s) lies in the subset D .

However, one may feel that this assignment of true and false is rather

undiscriminating insofar as the proposition `A P D ’ is adjudged false irrespec-

tive of whether AÅ (s) fails to be in D for all s P R or does so only for a `few’

points. For this reason, a more refined response is to say that one wants the

8 The most familiar response is that in order to assign values, we must do statistical physics,
i.e., we must have some probability measure m defined on 6, so that we say the probability
that the value of A lies in D , given that the macrostate is R , is Prob(A P D ; R) 5 m (R ù
A 2 1[ D ])/ m (R). But we are asking what can be said about values, supposing we are not doing
statistical physics.
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proposition `A P D ’ to be `more true,’ the smaller the set of such points s,
an idea that can be implemented by defining, for example, a generalized

truth value vR(A P D ) of the proposition `A P D ’ to be the set of such points:

vR(A P D ) : 5 R ù AÅ 2 1[ D ] (3.9)

Thus the set of possible truth values of `A P D ’ is the Boolean algebra of

Borel subsets of R # 6, the actual truth value being the subset of R in which

the value of AÅ does belong to D . (So, `totally true’ corresponds to the first

response’ s `true,’ and is represented by R itself, whereas `totally false’ is

represented by the empty set.) These two responses are certainly workable;

we discuss the second in another paper [2].
But a third response is much more similar to what we have discussed

in the quantum case. Namely, we note that even if AÅ (R) is not a subset of

D , there will be9 functions f : R ® R with the property that the `coarse-

grained’ function f(AÅ ) : 5 f + AÅ : 6 ® R satisfies the weaker condition f +
AÅ (R) # f( D ) (so that, according to the first response above, the weaker
proposition `f(A) P f( D )’ is true in the macrostate R). And we then define

the generalized truth value n R(A P D ) of the original proposition `A P D ’

to be the set of all such coarse-grainings of AÅ . Formally, in terms of the

category },

n R (A P D ) : 5 { f}: BÅ ® AÅ | BÅ (R) # f( D )} (3.10)

It is straightforward to check that the right-hand side of Eq. (3.10) is a sieve

on AÅ . Furthermore, n R(A P D ) has (classical analogues of) all the other
properties listed in Section 2.3.3 as clauses of the general definition of a

generalized valuationÐ as we shall discuss in the next subsection.

3.3. The Classical Analogue of Generalized Valuations

We will now generalize the use in Section 3.2 of macrostates to motivate

sieve-valued valuations, to obtain the classical analogue of the generalized

valuations in Section 2.3.2 associated with any partial valuation. All the

properties discussed in Sections 2.3.2 and 2.3.3 (and incorporated as clauses

of the definition of a generalized valuation)Ð in particular, the sieve analogue

of FUNCÐ will carry over to this classical setting.
We begin by noting that a macrostate R # 6 is naturally associated

with a classical partial valuation VR (i.e., an assignment to some quantities

of numbers as values, obeying a classical version of FUNC ). First we define

9 The assertion `will be’ is on the assumption that constant functions on 6 are admitted. Such
trivial functions are the classical analogues of real multiples of the unit operator 1Ãin quantum
physics, andÐ if desired Ð they can be removed from the base category }, just as the quantum
category 2 can be replaced with the category 2* in which multiples of 1Ãare removed.
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the domain of VR to be the set of all measurable functions on 6 that are

constant on the subset R:

dom VR : 5 {AÅ : 6 ® R | " s1, s2 P R, AÅ (s1) 5 AÅ (s2)} (3.11)

Then we define the value of a quantity A whose representative function AÅ

lies in the domain of dom VR, by

VR(AÅ ) : 5 AÅ (s0) (3.12)

for any s0 P R; since AÅ is constant on R, the result does not depend on the

choice of s0 in R. So VR(AÅ ) P 6(AÅ ). It also follows that dom VR is closed

under coarse-graining, and that the values of VR obey FUNC. That is, we
have, just as in the definition of a partial valuation in Section 2.3.2, if AÅ P
dom VR and BÅ 5 f(AÅ ), then (i) BÅ P dom VR and (ii) VR(BÅ ) 5 f(VR(AÅ )).

This prompts us to define a classical partial valuation in general (i.e.,
regardless of specifying a macrostate) as an assignment V to each element

AÅ belonging to some subset dom V of }, of a member of 6(AÅ ), such that if

BÅ 5 f(AÅ ), then (i) BÅ P dom V and (ii) V(BÅ ) 5 f(V(AÅ )). With this definition,
claims 1 and 2 of Sections 2.3.2 and 2.3.3 carry over completely to the

classical case: we simply substitute } for 2 (and so AÅ for AÃetc.) and the

`classical spectrum’ 6(AÅ ) for s (AÃ). Thus we claim:

1. Given such a partial valuation V, there is a natural associated valua-
tion that (i) is defined on all propositions `A P D ’ and (ii) assigns

to such a proposition as its value a sieve on AÅ in the category

}, namely,

n V(A P D ) : 5 { f}: BÅ ® AÅ | BÅ P dom V, V(B) P f( D )} (3.13)

Furthermore, the properties of these valuations, in particular, the

analogue for sieves of the property FUNC, carry over completely

from the quantum to the classical case.

2. Accordingly, we can use these properties to generalize the notion
of a valuation, i.e., to define a generalized valuation as a map that

(i) assigns a sieve on AÅ to each proposition `A P D ’ and (ii)

has these properties. We can also present our collection of sets of

propositions at each stage AÅ as a classical coarse-graining presheaf

G that (i) assigns to each AÅ the Boolean algebra of propositions of

the form `A P D ’ (or, equivalently, the algebra of characteristic
functions x D : the classical analogue of the spectral projectors in

quantum theory) identified as the Boolean algebra of Borel subsets

D # 6(AÅ ), and (ii) acts on morphisms f}: B ® A such that G( f} )

coarsens propositions, in exact analogy to Eq. (2.22).



Topos Perspective on Kochen ± Specker Theorem 845

But we shall not rehearse all the definitions, and verifications of properties,

substantiating these claims. First, they carry over directly from the discussion

in (I) of the quantum case, and second, we shall see in the sections to follow
that many of these definitions and properties apply much more widely than

in classical and quantum physics.

Something that is worth developing a little further, however, is the

observation that, as in the quantum case, the situation can arise in which f( D )

is not a Borel subset of R , even though D is. In this context, we note that

the central reason why it is feasible to regard Eq. (2.23) as a definition of
EÃ[ f(A) P f( D )] if f( D ) is not Borel is that the lattice of projection operators

is complete, and hence the right-hand side of Eq. (2.23) is well defined. A

natural analogue of this construction in the classical case would be to start

with the Hilbert space L2(S, d m ), where d m is the natural measure on the

classical state space (a 2n-dimensional symplectic manifold, where n is the

number of degrees of freedom) S formed by taking the wedge product n
times of the basic symplectic 2-form on S. Any proposition A P D can then

be associated with a corresponding projection operator on this Hilbert space:

namely, the projection onto the Borel subset A 2 1( D ). An analogous trick to

that in Eq. (2.23) can then be applied by using the projection lattice on

the separable Hilbert space L2(S, d m ). However, we shall not go into the
mathematical details here since in the present paper our invocation of the

classical example is intended primarily to be of pedagogical value as an

illustration of the general concepts that will be discussed in the next section.

Finally, for the sake of completeness, we remark on the classical analogue

of claim (3) of Section 2.3.4: the claim that an orthodox quantum state, a

vector c P * or a density matrix r , induces a generalized valuation. For
c P *, we defined [see Eq. (2.26)]

n c (A P D ) : 5 { f2: BÃ® AÃ| EÃ[B P f( D )] c 5 c }

5 { f2: BÃ® AÃ| Prob(B P f( D ); c ) 5 1} (3.14)

where D is a Borel subset of the spectrum s (AÃ) of AÃ. In the classical case,

for s P 6 and D a Borel subset of the `classical spectrum’ 6(AÅ ), the analogue

of Eq. (3.14) is clearly

n s(A P D ) : 5 { f}: BÅ ® AÅ | x [B P f( D )](s) 5 1} 5 { f}: BÅ ® AÅ | f(AÅ (s)) P f( D )}

(3.15)

where x [B P f( D )] is the characteristic function for BÅ 2 1( f( D )). It is easy to see
that the sieve n s (A P D ) is the principal sieve, 1 V (A) 5 ¯ A (so that in the

language of Section 2.3.2, `A P D ’ is totally true) if and only if AÅ (s) P D .

One can check that n s has all the properties required in the definition of a

generalized valuation [items (i)±(iv) in Section 2.3.3].
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Furthermore, there is a corresponding classical analogue of the definition

of the generalized valuation n r associated with a density matrix; r :

n r (A P D ) : 5 { f2: BÃ® AÃ| Prob(B P f( D ); r ) 5 1}

5 { f2: BÃ® AÃ| tr( r EÃ[B P f( D )]) 5 1} (3.16)

Namely, the classical analogue is that, with r now representing a classical

mixed state, i.e., a probability measure on 6,

n r (A P D ) : 5 { f}: BÅ ® AÅ | Prob r (B P f( D )) 5 1} (3.17)

where Prob r (B P f( D )) is the classical statistical probability, according to r ,

that `B P f( D ),’ i.e., the r -measure r (BÅ 2 1( f( D ))) of BÅ 2 1( f( D )). It follows that

the sieve n r (A P D ) is the principal sieve, 1 V (A) 5 ¯ A, if and only if r (AÅ 2 1( D ))

5 1, i.e., if and only if `A P D ’ is certain according to r .

4. GENERAL PROPERTIES OF SIEVE-VALUED VALUATIONS

In this section and the next we turn to showing how sieve-valued valua-

tions arise much more generally than just in the examples of quantum and

classical physics discussed earlier. Indeed, we claim that they are one of the

most natural notions of valuation for any presheaf of propositions, no matter
what their topic. In claiming this we will assume about valuations only the

basic idea that they must be some sort of structure-preserving function from

the sets of contextualized propositions (with some such operations as negation,

conjunction, etc., defined on it) to the corresponding sets of truth values,

which are to be some sort of logical algebra.

In this section, we will argue for this claim by displaying how some of
the principal ideas and results of Section 4.2 and Section 5 of (I)Ð specifically,

the sieve version of FUNC already emphasized in Sections 2 and 3 above,

and the notion of `coarse-graining’ Ð can be greatly generalized so that, for

the most part, they apply to any presheaf of propositions. Another argument

for the claim will be presented in Section 5 of the present paper.

4.1. The Role of FUNC

In this subsection, we introduce our most general version of FUNC, and

motivate it and the idea of a sieve-valued valuation on an arbitrary presheaf

of propositions G, by showing that together they define natural transforma-

tions from G to V , and hence subobjects of G.
Let # be any small category, with objects A, B, . . . ; and let G be any

presheaf on #, with the set G(A) having elements d, e, . . . . We think of the

pair [A, d] as specifying a proposition at the context, or stage of truth, A;

and so of G as a presheaf of propositions. We call a function n that assigns
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to each choice of object A and each d P G(A), a set of morphisms in # to

A (i.e., morphisms with A as codomain), a morphism-valued valuation on G.

We write the values of this function as n (A, d ).
Note that for any set S of morphisms to A (not necessarily a sieve), and

any f : B ® A, we can define a pullback to B of S by Eq. (2.4):

f*(S) : 5 {h: C ® B | f + h P S} (4.1)

although we note that there is no compelling reason for this definition if the

sets S are totally unrestricted. However, this caveat notwithstanding, we

will say that a morphism-valued valuation satisfies generalized functional
composition Ð for short, FUNCÐ if for all A, B and f : B ® A and all d P
G(A), it obeys

n (B, G( f )(d )) 5 f *( n (A, d )) (4.2)

We call a morphism valuation on G a sieve-valued valuation on G if

its values are all sieves; in this case Eq. (4.1) is much better motivated since

the pullback of a sieve is itself a sieve. The discussion in Section 2 already
supplies us with two motivations for using sieve valuations in this very

general setting. First, from a logical perspective, if we think of G(A) as a

set of propositions, we expect a value n (A, d ) of such a proposition to be

some sort of truth value, and we saw in Section 2 how V supplies a well-

behaved set of contextual and generalized truth values.
Second, and more generally, for any presheaf G, a natural notion of a

valuation on G is a subobject of G. Think, as in logic, of a valuation as

specifying the `selected’ or `winning’ elements d in each G(A). One naturally

imagines that these selected elements might form a subobject of G. But

we saw in Section 2 that subobjects are in one±one correspondence with

morphisms, i.e., natural transformations, N: G ® V . So one expects that at
least some sieve-valued valuations will define such a natural transformation

by N n
A(d ) : 5 n (A, d ).

This motivation for sieve-valued valuations leads directly to FUNC. For

it turns out that FUNC is exactly the condition a sieve-valued valuation must

obey in order to thus define a natural transformation, i.e., a subobject of G.

Specifically, we have [cf. Theorem 4.2 of (I)] the following result.

Theorem 4.1. A sieve-valued valuation n on G obeys FUNC if and only

if the functions at each stage of truth A

N n
A(d ) : 5 n (A, d ) (4.3)

define a natural transformation N n from G to V .

Proof. Suppose f : B ® A, so that naturalness means that the compos-

ite map
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G(A) ®
N n

A

V (A) ®
V ( f )

V (B)

is equal to

G(A) ®
G( f )

G(B) ®
N n

B

V (B)

But given that N n
A(d ) : 5 n (A, d ), this is the condition that

V ( f )( n (A, d )) 5 (N n
B + G( f ))(d ) 5 n (B, G( f )(d )) (4.4)

which is exactly FUNC. QED

To sum up: We conclude that sieve-valued valuations obeying FUNC
are a very natural notion of valuation on any presheaf of propositions.

4.2 Coarse-Graining Presheaves

In this subsection, we will generalize one of the main notions in Section

5 of (I): the idea of generalized coarse-graining. Our generalization of this

notion involves the use of a new map, called the comparison functor; this
will also be needed in Section 5 in our general discussion of the logic of

partial truth.

There are two main ways in which we shall generalize the idea of

coarse-graining:

1. In (I), the set of `propositions ’ G(AÃ) at each stage AÃwas a Boolean

algebra [of Borel subsets of s (AÃ), or equivalently of AÃ’ s spectral

projectors; and similarly for the classical case; cf. Section 3]. How-
ever, here we shall assume only that G(A) is a poset with a 0 and

a 1. Indeed, much of what follows could be generalized to the case

where G(A) is just a poset; but we will also require a 0 and a 1, to

link to the null, exclusivity and monotonicity clauses of the definition

of a generalized valuation, Eqs. (2.17) ±(2.19) [see Eqs.

(4.7)±(4.9)below].
2. In (I), generalized coarse-graining was defined so as to use, for the

case where f2Ã: BÃ ® AÃ, the identity map on G(BÃ) to embed the

Boolean algebra G(BÃ) into its superset (larger Boolean algebra)

G(AÃ) [this was used in writing Eq. (2.22)]. In the generalization in

this subsection to any presheaf of propositions G on any small

category # such that G(A) is a poset with a 0 and 1, we will again
need a map acting in the opposite direction to G( f ). But it need

not be the identity map, since the poset G(B) need not be a subset

of G(A). So we will simply assume that there is some such map

(given by the comparison functor introduced in Section 4.2.1 below).
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We should also note another way in which the exposition to follow

differs from that in Section 5 of (I). There, our discussion took as the base

category, not 2, but the poset 0 of all Boolean subalgebras of the projection
lattice 3(*) of the Hilbert space *. In this category,10 the objects are defined

to be the subalgebras W P 0, and a morphism is defined to exist from W2

to W1 if W2 # W1: thus there is at most one morphism between any two

objects. In some respects 0 is a more natural category to work with than

2, since it `identifies’ quantities that are each a function of the other, and

hence have the same spectral algebra.
For this reason, in (I) we sometimes worked with 0, rather than 2. In

particular, the Kochen±Specker theorem gets as natural an expression in

terms of 0, as it does in terms of 2. But, for the sake of brevity, in the

review of (I) in the present paper we have used only the category 2 (and its

classical analogue }). And again in this subsection, while generalizing Sec-

tion 5 of (I), we will present our definitions and results in terms of the
category #, which we have hitherto thought of as generalizing 2. So for the

rest of this subsection, we assume as in Section 4.1 that # is any small

category, with objects A, B, . . . , and that G is a presheaf on #, with the set

G(A) having elements d, e, . . . . We also assume that at each A, G(A) is a

poset with a 0 and a 1.

4.2.1. The Comparison Functor

In Section 5 below, given a morphism f : B ® A, we shall need to be

able to `push forward’ a proposition d P G(B) to G(A) for comparison of

`logical strength’ [i. e., comparison according to the partial order , in the

poset G(A)] with propositions in G(A).

In (I), this presented no problem since, in using the base category 0,

we have that d P G(B) ( 5 W2) is itself also a member of G(A) ( 5 W1) (if
f : W2 ® W1, so that W2 # W1). But with a general category #, this fails

since there is no a priori embedding of G(B) in G(A).

Accordingly, we now assume that such a map is given. More precisely,

we assume that whenever f : B ® A in #, we are given a map from G(B) to

G(A), which need not be injective. For much of the argument to follow, we
do not need to assume that these maps mesh under composition so as to give

a (covariant) functor from # to Set, but for simplicity we will do so. Thus

we assume that there is a covariant functor C from # to Set, called the

10 In a similar way, one can make a category out of any poset; in particular, the corresponding
category for classical physics will consist of all Boolean subalgebras of the algebra (itself
Boolean!) of all Borel subsets of the classical state space 6, again ordered by subalgebra
inclusion.
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comparison functor (`C’ for `comparison’ ), with the same action on objects

A in # as has G. To sum up:

x C(A) : 5 G(A) at all A.

x If f : B ® A, there is a map C( f ): C(B) ® C(A).

4.2.2. Coarse-Graining Presheaves

We turn now to the main topic of this subsection, which is to generalize

the discussion in (I), Section 5, of generalized coarse-graining. In effect, that

discussion proceeded by noting three properties of the original coarse-graining

presheaf G: 2 ® Set (defined in Section 2.3.3 above), and then defining a
coarse-graining presheaf to be any presheaf with these properties. These

properties were called `coarse-graining,’ `retraction,’ and `monotonicity,’ but

we need not list them. (We say `in effect,’ just because the definition was

in terms of the category 0, not 2.)

Here, we will generalize to any small category #. The idea is to take

the comparison functor C to be given ab initio, and then to define a presheaf
G to be a `coarse-graining’ with respect to C if it has these three propertiesÐ or

rather, their generalizations, to allow for C( f ) not necessarily being a subset

inclusion map.

So we assume we are given a covariant functor C from # to Set, with

all the C(A) being posets with a 0 and 1. Then we define a coarse-graining
with respect to C to be a presheaf G on # (i.e., a contravariant functor from
# to Set), with the following properties:

1. G has the same action on objects as C, i.e., G(A) : 5 C(A).

2. `Coarse-graining’ : if f : B ® A, then for all d P G(A),

d # C( f )[G( f )(d )] (4.5)

3. `Monotonicity’ : If f : B ® A, and d # e in G(A), then G( f )(d ) #
G( f )(e) in G(B).

In (I) we also added the following condition:

4. `Generalized retraction’ : If f : B ® A, then for all d P G(B),

G( f )[C( f )(d )] 5 d (4.6)

But we note that if this extra condition (4.6) is imposed, then the map C( f ):

G(B) ® G(A) is necessarily injective (i.e, it is one-to-one), and hence we

have only a marginal generalization of the situation in (I) in which G(B) is
an explicit subset of G(A). On the other hand, the motivation for imposing

the generalized retraction condition in the first place was closely linked to

the fact that G(B) is a subset of G(A) in the example of quantum theory;

therefore it is legitimate to consider removing this condition, with a concomi-



Topos Perspective on Kochen ± Specker Theorem 851

tant freeing up of possibilities for the comparison-functor maps C( f ):

G(B) ® G(A).

4.2.3. Generalized Valuations on a General Coarse-Graining Presheaf

The general notion of a coarse-graining presheaf just introduced admits

generalized valuations of the FUNC-obeying kind originally envisaged in (I)

and in Section 4.1.

The first step is to define a local valuation of the poset G(A) in the

Heyting algebra V (A). This is to be a map f : G(A) ® V (A) such that the

following conditions are satisfied:

Null proposition condition: f (0G(A)) 5 0 V (A) (4.7)

Monotonicity: a # b implies f ( a ) # f ( b ) (4.8)

Exclusivity: If a Ù b 5 0G(A) and f ( a ) 5 1 V (A),

then f ( b ) , 1 V (A) (4.9)

which are the appropriate analogues of Eqs. (2.17)±(2.19), respectively.

Now we define a generalized valuation on # associated with a coarse-

graining presheaf G (G being with respect to some comparison functor C )

to be a family of local valuations f A: G(A) ® V (A) at each A such that if

f : B ® A, then, for all d P G(A),

f B(G( f )(d )) 5 f*( f A(d )) (4.10)

Bearing in mind that this equation is essentially FUNC, Eq. (4.2), and that

local valuations obey the null proposition, monotonicity, and exclusivity

conditions in Eqs. (4.7)±(4.9), we see that this definition directly generalizes

the generalized valuations on 2 of Section 2.3.3. So the definition is nonempty.

In particular: In (I), Section 5.3.4, we showed that a density matrix defines

such a generalized valuation on the specific category 0, associated with any
coarse-graining presheaf on 0. A similar result can be proved for the classical

case, using the material at the end of Section 3 above, especially Eq. (3.17).

Finally, we remark that since these generalized valuations for an arbitrary

coarse-graining presheaf G (with respect to an arbitrary comparison functor)

obey FUNC, the discussion of Section 4.1 applies. That is: Each such general-

ized valuation, F say (a family of local valuations f A), defines a natural
transformation N F from the coarse-graining presheaf G to the subobject

classifier V , by defining the components:

N F
A (d ) : 5 f A(d ) (4.11)
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As emphasised in Section 2.2, such natural transformations are in one-to-

one correspondence with subobjects. Thus each such generalized valuation

defines a subobject of G.

5. THE LOGIC OF PARTIAL TRUTH

We turn now to give our final motivation for the use of sieve-valued

valuations. We start from a handful of general intuitive requirements about

how the truth values of propositions should reflect their logical relations,
and argue that sieve-valued valuations are the natural way to satisfy these

requirements. More precisely: Valuations taking sieves as their values are

determined in a natural way, for any category # of `contexts,’ once we require

the following:

(i) Each object in the category has an associated family of propositions,
with different families corresponding to different objects mesh-

ing suitably.

(ii) The valuation is to represent partial truth (degrees of truth), subject

to some weak conditions, the most important being that the partial

truth value of a proposition at a stage A in # is to be determined

by which of its consequences (weaker propositions) are totally true
at their own stage.

The concrete valuations discussed in Sections 2.3 and 3 [and in (I)] arise

from applying these requirements to propositions about the values of physi-

cal quantities.

We emphasize that although we think the conditions in (ii) on partial
truth are very reasonable, we make no claim that they are obligatory. In the

philosophical literature, partial truth is modeled in various ways, and indeed

often rejected altogether (for example, [6]). We discuss this more in ref. 2.

Here, suffice it to say in defense of our own notion that at least it is tightly

controlled by the notion of total truth, in the sense that the partial truth value

of any proposition is determined by which propositions are totally true.
Our argument will be very general. Indeed, the only precise mathematical

notion that is needed is that of a sieve in a category. Otherwise, the argument

can be formulated intuitively, for example, in its use of the idea of one

proposition being a consequence of (logically weaker than) another. Of course,

by assuming mathematical notions in addition to that of a category, these

intuitive ideas can be made precise. But it seems to us best to emphasize the
generality of the intuitive argument by assuming these further notions only

after giving the argument.

We will therefore proceed in two subsections. Section 5.1 will give the

intuitive argument that assumes only the notion of a category, and leads to
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sieve-valued valuations. Section 5.2 will comment on the argument, and

exhibit one natural way of making its intuitive ideas precise, in particular,

making consequence (entailment) precise by having the families of proposi-
tions at each stage be posets, and having embedding maps like the comparison

functor introduced in Section 4.2.

5.1. The Intuitive Argument for Sieve-Valued Valuations

Suppose we are given some category #, and that to each object A P #
is associated a set 3(A) whose elements d we will call `items.’ We allow

that for different objects A, B in # the sets 3(A), 3(B) can differ. For each

A and d P 3(A) we think of [A, d] as a proposition. We do not require that

for fixed A, the family {[A, d] | d P 3(A)} is a Boolean algebra, nor, for the

moment, that it have any other structureÐ for example, that of a poset. But
we do require the following assumptions.

(A) The morphisms in the category are associated with maps between

propositions for different objects, as follows. If there is a morphism
f : B ® A from B to A, then there is a function from the family

of propositions {[A, d] | d P 3(A)} to the corresponding family

{[B, e] | e P 3(B)} associated with B. We represent this map

associated with f by f ² acting on the items d. So given a morphism

f : B ® A, then [B, f ² (d )] is the `B-proposition’ that `corresponds
by f ’ to [A, d]. Furthermore, recalling that every object A in a

category has an identity morphism, idA: A ® A, we require that

the map on propositions associated with the identity morphism be

the identity map on propositions. That is, we require that for any

A, (idA) ² 5 id3(A).

We make two remarks about this assumption:

(a) We do not initially require that the associations A j 3(A) and
f j f ² together define a presheaf on #. That is, we do not need

to assume that, given morphisms f : B ® A and g: C ® B, and so

a morphism f + g: C ® A, we have g ² ( f ² (d )) 5 ( f + g) ² (d ). However,

we note in passing that if this presheaf condition is not satisfied,

then the `² ’ operation is `path-dependent’ in the following sense:

If a morphism k: C ® A can be factored in the form

C ®
g

B ®
f

A, then the pullback k ² (d ) of d P 3(A) may not equal

the composite pullback g ² ( f ² (d )) obtained by factoring k through
the intermediate object B. In most physical situations, such a

behavior would be considered distinctly pathological.

(b) To use the notation G( f ) instead of f ² would echo the notation

in Section 4.2 [and its special cases, Definitions 5.3 and 5.4 of



854 Butterfield and Isham

(I)]. But we use f ² to indicate that we do not require a presheaf.

See the next subsection for how the argument to come can be

carried over to any coarse-graining presheaf in the sense of Sec-
tion 4.2.

(B) For any morphism, f : B ® A, and any proposition [A, d], the

corresponding B proposition [B, f ² (d )] is intuitively logically

weaker than (a consequence of) [A, d].

Again, we make two remarks about this assumption.

(a) To accommodate the identity morphism, and the requirement of

(A) that (idA) ² 5 id3(A), we note that `weaker’ here means `strictly
weaker or the same as,’ just as ` # ’ means `is less than or equal

to.’ Similarly for `consequence.’

(b) Again, it is enough at this stage to use `logically weaker’ in an

intuitive sense, so as to motivate the requirements in (C) below.

Subsection 2 will make it precise, in terms of each object’ s family

of propositions being a poset and there being a comparison functor
between them.

(C) We propose to assign to each proposition [A, d] a truth value

n (A, d ). There is to be one truth value, called `total truth’ (as

against the other `partially true’ values), that is subject to the

following intuitive requirements:

(a) If [A, d] is totally true, so are all its weakenings (consequences)

[B, f ² (d )] [note that since assumption (A) required (idA) ² 5 id3(A),
[A, d] is one of its own weakenings, and so the converse statement

is automatic].

(b) If [A, d] is partially true (i.e., has one of the other truth values),

it is in some intuitive sense `more true,’ or `nearer being totally

true,’ the more of its weakenings [B, f ² (d )] are totally true.

(c) The truth value n (A, d ) is to be determined by which of the
weakenings [B, f ² (d )] of [A, d] is totally true, determined in some

way that obeys (a) and (b) above.

We make three remarks about assumption (C). First, part (c) is perhaps

less intuitive than parts (a) and (b), but it can be motivated by the philosophical

idea that the semantic value or `content’ of a sentence is determined by the

set of those of its consequences that are true (in the usual classical two-

valued sense)Ð we discuss this in ref. 2. Second: Part (c) can also be defended
as likely to mollify sceptics about partial truth. For it makes the notion of

partial truth tightly controlled by the more acceptable notion of total truth:

once the maps f ² and the set of totally true propositions is given, the partial

truth values of all propositions are fixedÐ and fixed `individually’ in that
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the partial truth value of [A, d] depends only on which of its weakenings are

totally true. In any case, we now assume (c). Third: One might propose as

intuitive a variant of (b), namely (b8): if [A, d] is partially true, it is more
true (i.e., nearer total truth), the more of its weakenings [B, f ² (d )] are near

to total truth. But we will make no use of this.

Given these assumptions, the intuitive argument proceeds in two steps.

First, these assumptions, especially part (c) of (C), prompt a very natural

suggestion for what n (A, d ) should be. Namely:

(M) n (A, d ) is to be the set of those morphisms f : B ® A with the

property that the corresponding proposition [B, f ² (d )] is totally

true. In symbols:

n (A, d ) 5 { f : B ® A | [B, f ² (d )] is totally true} (5.1)

[We write `(M)’ for `morphisms.’ ] This suggestion makes n (A, d ) determined

by which weakenings of [A, d] are totally true, as required by (C), part (c):

indeed, determined very simply.

Second, one naturally asks: What is it for a proposition, whether [B,
f ² (d )] or [A, d], to be totally true? That is not yet settled. But again there is

a very natural suggestion, obeying parts (a) and (b) of (C). Namely:

(T) For any proposition [A, d], total truth is just n (A, d ) being the set

of all morphisms, f : B ® A, to A, i.e., the principal sieve on A.

In symbols:

[A, d] is totally true if n (A, d ) 5 ¯ A (5.2)

[We write `(T)’ for `total truth’ .] This suggestion is natural, because when

taken together with (M), (i) it follows that part (a) of (C) holds, and (ii) it
follows that part (b) of (C) holds, in a very natural sense of the phrase `[A, d]

is more true,’ namely that n (A, d ) is a larger subset of ¯ A.

Finally, to complete the intuitive argument: It follows immediately from

(M) and (T) taken together that n (A, d ) is a sieve. For recall that, for any

object A in a category #, a set S of morphisms to A is a sieve if and only

if the pullback along any morphism in S is the principal sieve.

5.2. Assessing the Argument

We will make two comments on the argument in the last subsection,

and then describe how to make it precise using the ideas in Section 4.2.
First, we emphasize that the intuitive argument is not a genuine deduction

of valuations being sieve-valued. It only claims that (M) and (T) (and there-

fore, sieve-valued valuations) are natural, given (A)±(C). One could perhaps

get a genuine deduction of n (A, d ) being a sieve, but only at the price of
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some strong premises. Indeed, the obvious stronger premises that one might

consider do not quite imply (M) and (T), they just make them even more

natural than they were in Section 5.1. Thus suppose we added as premises
both of the following:

(D) The truth value n (A, d ) is some set of morphisms to A
(T) Total truth is to be just n (A, d ) being the principal sieve on A. In

symbols: [A, d] is totally true if and only if n (A, d ) 5 ¯ A.

Even these two do not imply (M); though they make it extremely natural to

accept (M), and therefore to accept (as in the argument in Section 5.1) n (A, d )

being a sieve.

More generally, we agree that essentially the same argument can be
given different versions; and we make no claim to the version in Section 5.1

being the unique best balance between premises being plausible and the

inference being rigorously deductively valid. (We admit that in philosophical

argument, we tend to weigh the former more highly, as shown by our choice

of version in Section 5.1.)
Second, we note that the fact that n (A, d ) is a sieve implies the special

case of our sieve version of FUNC, viz. the case when f : B ® A P n (A, d ).

For by the construction above

n (B, f ² (d )) 5 ¯ B (5.3)

while by the definition of a sieve and the fact that f : B ® A P n (A, d ),

f*( n (A, d )) 5 ¯ B (5.4)

But nothing in the argument implies our sieve version of FUNC in full

generality, i.e., the principle that even when f : B ® A ¸ n (A, d )

n (B, f ² (d )) 5 f *( n (A, d )) (5.5)

On the other hand, as we saw in Section 4.1, FUNC can be motivated by

the requirement that a valuation determines a subobject of G.
Finally, we round off this section by showing how to make the intuitive

argument precise by using the notions of Section 4.2. We only need to make

assumptions (A)±(C) precise; the argument then proceeds as in Section 5.1.

So, first, we can make (A) precise by requiring that (i) each of the sets 3(A)

be a poset with a 0 and a 1, and (ii) the map A j 3(A) define a presheafÐ as

explained above, this requirement is natural in view of the likely existence
of factorizations of morphisms k: C ® A. From now on, we call this presheaf

G, as in Section 4.2 (and earlier). So 3(A) 5 G(A) and f ² 5 G( f ). Note

that the fact that G is a presheaf now implies our requirement that (idA) ² 5
id3(A), i.e., G(idA) 5 idG(A).
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Second, to make (B) precise: Whenever f : B ® A, we need to be able

to `push forward’ a proposition [B, G( f )(d )]Ð or, in our other notation,

G( f )(d ) P G(B)Ð to G(A) for comparison of `logical strength’ [i.e., compari-
son according to the partial order , in G(A)] with the proposition [A, d],

i.e., with d P G(A). And the pushed proposition is required to be weaker

(i.e., higher in the partial order) than [A, d]. So we require:

x There is a comparison functor in the (weak) sense of Section 4.2.1,

i.e., a covariant functor C from # to Set with the same action on

objects A in # as has G: C(A) : 5 G(A).

x The functors C and G together obey generalized coarse-graining, Eq.

(4.5), i.e.,

d # C( f )[G( f )(d )] (5.6)

The generalized retraction and monotonicity clauses in the definition in
Section 4.2 of a generalized coarse-graining presheaf are not needed a priori,
although we note that the monotonicity condition is particularly natural.

Finally, (C) can be rendered precise by requiring that the set of truth

values be a poset with a 1 (representing `totally true’ ), and that assignments

of truth values n should obey the following conditions:

(a) If n (A, d ) 5 1, then for any f : B ® A, n (B, G( f )(d )) 5 1.

(b) Suppose [A, d] and [A, e] are such that whenever f : B ® A, if

n (B, G( f )(d )) 5 1, then also n (B, G( f )(e)) 5 1. Then

n (A, d ) , n (A, e) (5.7)

(c) n (A, d ) is determined by the set

{[B, G( f )(d )] | f : B ® A and n (B, G( f )(d )) 5 1}

Given these assumptions, the argument for sieve-valued valuations, i.e., for
the set of truth values at each A in # being V (A), can proceed just as in

Section 5.1, though with the new notation, G, C, etc.

6. CONCLUSION

To conclude, let us summarize some of our main proposals [both in (I)

and this paper], referring mainly to the physical cases (quantum and classical).

(1) We consider the set of physical quantities as a mathematical category,
with morphisms given by coarse-graining, i.e., taking functions of quantities.

So in quantum theory, we consider the category 2 of bounded self-adjoint

operators on a Hilbert space *, with a morphism from one such operator BÃ

to another AÃwhenever BÃis a function of AÃ. Correspondingly, for classical
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physics, we consider the category } of real-valued measurable functions on

a classical state space 6, with a morphism from one such function, BÅ to

another AÅ whenever BÅ is a function of AÅ .
(2) We assign to each proposition `A P D ’ (that says the value of the

quantity A lies in the Borel set D ) as its value a sieve on AÐ a sieve on A
being a set of morphisms to A, f : B ® A, that is closed under further coarse-

graining. (Here and in what follows, we use `A’ to stand indifferently for a

quantum or classical quantity, represented by AÃor AÅ , respectively.)

(3) The previous paper motivated this proposal for quantum theory by
linking the Kochen±Specker theorem to the theory of presheaves. For our

category 2d of discrete-spectrum operators, the theorem states that if the

dimension of * is greater than 2, then there are no real-valued functions V
on 2d that have the FUNC property,

V( f(AÃ)) 5 f(V(AÃ)) (6.1)

On the other hand, a presheaf is an assignment, to each object in a category,

of a set such that the sets assigned to objects that are related by a morphism,

`mesh’ with each other by having a corresponding set morphism, i.e., a

function, between them.

The Kochen±Specker theorem turns out to be a statement about the
presheaf on 2 that assigns to each operator its spectrum: the meshing of this

presheaf turns out to be very closely related to the meshing of values given

by Eq. (6.1). Namely, the Kochen±Specker theorem says that this presheaf

has no global elements, where a global element is the analogue for presheaves

of the ordinary idea of an element of a set.

This situation suggests partial valuations on 2d , i.e., real-valued functions
on a subset of 2d that obey Eq. (6.1), and this led us to our proposed sieve-

valued valuations on all of 2. These have a corresponding FUNC property

(expressed in terms of pullbacks of sieves) and other natural properties (like

null proposition and monotonicity), and yet they are defined on all quantities.

(4) In this paper, we have motivated these proposals in three other ways.

First, we showed that they apply equally well to classical physics: in the
absence of Kochen±Specker prohibitions, we considered how to define a

valuation given only a macrostate (Section 3). Second, we showed how some

of our main proposals carry over directly to the very general setting of any

presheaf of propositions on any small category; e.g. the equivalence of FUNC
to a sieve-valued valuation specifying a subobject (Section 4). Third, we

showed that our sieve-valued valuations are a very natural way to satisfy
some general intuitive requirements about partial truth as applied to a presheaf

of propositions defined on any (small) category (Section 5). Here we empha-

sized the point that for our valuations, the partial truth value of a proposition

is determined by which of its weakenings are totally true.
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